Methylglyoxal‐induced apoptosis is dependent on the suppression of c‐FLIPL expression via down‐regulation of p65 in endothelial cells

نویسندگان

  • Ji Hoon Jang
  • Eun-Ae Kim
  • Hye-Jin Park
  • Eon-Gi Sung
  • In-Hwan Song
  • Joo-Young Kim
  • Chang-Hoon Woo
  • Kyung-Oh Doh
  • Kook Hyun Kim
  • Tae-Jin Lee
چکیده

Methylglyoxal (MGO) is a reactive dicarbonyl metabolite of glucose, and its plasma levels are elevated in patients with diabetes. Studies have shown that MGO combines with the amino and sulphhydryl groups of proteins to form stable advanced glycation end products (AGEs), which are associated with vascular endothelial cell (EC) injury and may contribute to the progression of atherosclerosis. In this study, MGO induced apoptosis in a dose-dependent manner in HUVECs, which was attenuated by pre-treatment with z-VAD, a pan caspase inhibitor. Treatment with MGO increased ROS levels, followed by dose-dependent down-regulation of c-FLIPL . In addition, pre-treatment with the ROS scavenger NAC prevented the MGO-induced down-regulation of p65 and c-FLIPL , and the forced expression of c-FLIPL attenuated MGO-mediated apoptosis. Furthermore, MGO-induced apoptotic cell death in endothelium isolated from mouse aortas. Finally, MGO was found to induce apoptosis by down-regulating p65 expression at both the transcriptional and posttranslational levels, and thus, to inhibit c-FLIPL mRNA expression by suppressing NF-κB transcriptional activity. Collectively, this study showed that MGO-induced apoptosis is dependent on c-FLIPL down-regulation via ROS-mediated down-regulation of p65 expression in endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Down-Regulation of T Cell Function by Heat Shock-Induced Excretory Factor of Leishmania Major

Background: Despite demonstration of molecular and biochemical changes induced by heat shock on Leishmania, the immunological importance of such changes has not been elucidated.  Objective: Studying the effect of two excretory factors prepared under heat shock and ambient temperature from Leishmania major on Balb/c splenocytes function.  Methods: The parasites were cultured at 25°C and then sub...

متن کامل

The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370

Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2017